Categories
Eclipse IoT

Using MQTT-SN over BLE with the BBC micro:bit

The micro:bit is one of the best IoT prototyping platforms I’ve come across in the past few months.

The main MCU is a Nordic nRF51822 with 16K RAM and 256K Flash. A Freescale KL26Z is used for conveniently implementing a USB interface as well as a mass storage driver so as deploying code onto the micro:bit is as simple as directly copying a .hex file over USB (if your familiar with the mbed ecosystem, this will sound familiar :-)).

The board is packed with all the typical sensors and actuators you need for prototyping an IoT solution: accelerometer, compass, push buttons, an LED matrix, … What’s really cool, is the built-in BLE support, combined with the battery connector, making it really easy to have a tetherless, low-power [ref]You should keep in mind that the micro:bit, like other similar boards, is meant to be a prototyping platform, and for example having the KL26Z core taking core of the USB controller might not be ideal battery-wise, if you only care about doing tetherless BLE communications.[/ref], IoT testing device.

So how does one take the micro:bit and turn it into an IoT device? Since there is no Internet connectivity, you need to rely on some kind of gateway to bridge the constrained device that is the micro:bit to the Internet. You can of course implement your own protocol to do just that, but then you have to basically reimplement the wheel. That’s the reason why I thought the micro:bit would be ideal to experiment with MQTT-SN.

You can jump directly to the video tutorial at the end of the post, and come back later for more in-depth reading.

What is MQTT-SN and why you should care

If I were to over simplify things, I would just say that MQTT-SN (which stands for “MQTT for Sensor Networks”, by the way) is an adaptation of the MQTT protocol to deal with constrained devices, both from a footprint/complexity standpoint, and to adapt to the fact constrained devices may not have TCP/IP support.

MQTT-SN is designed so as to make the packets as small as possible. An example is the fact that an MQTT-SN client registers the topic(s) it wishes to us against the  server, this way further PUBLISH or SUBSCRIBE exchanges only have to deal with a 2-byte long ID, as opposed to a possibly very long UTF-8 string.

Like I said before, you really don’t want to reimplement your own protocol, and using MQTT-SN just makes lot of sense since it bridges very naturally to good ol’ MQTT.

Setting up an MQTT-SN client on the micro:bit

The MQTT-SN supports the BLE UARTService from Nordic, that essentially mimics a classical UART by means of two BLE characteristics, for RX and TX. This is what we’ll use as our communication channel.

The Eclipse Paho project provides an MQTT-SN embedded library that turns out to be really easy to use. It allows you to serialize and deserialize MQTT-SN packets, the only remaining thing to do is for you to effectively transmit them (send or receive) over your communication channel – BLE UART in our case.

In order to show you how simple the library is to use, here’s an example of how you would issue a CONNECT:

MQTTSNPacket_connectData options = MQTTSNPacket_connectData_initializer;
options.clientID.cstring = microbit_friendly_name();
int len = MQTTSNSerialize_connect(buf, buflen, & options);

int rc = transport_sendPacketBuffer(buf, len); /* wait for connack */

rc = MQTTSNPacket_read(buf, buflen, transport_getdata);
if (rc == MQTTSN_CONNACK) {
  int connack_rc = -1;
  if (MQTTSNDeserialize_connack( & connack_rc, buf, buflen) != 1 || connack_rc != 0) {
    return -1;
  } else { // CONNECTION OK - continue
  }
} else {
  return -1;
}

Now what’s behind the transport_sendPacketBuffer and transport_getdata functions? You’ve guess correctly, this is where either send or read a buffer to/from the BLE UART.
Using the micro:bit UART service API, the code for transport_getdata is indeed very straightforward:

int transport_getdata(unsigned char * buf, int count) {
  int rc = uart->read(buf, count, ASYNC);
  return rc;
}

You can find the complete code for publishing the micro:bit acceloremeter data over BLE on my Github. Note that for the sake of simplifying things, I’ve disabled Bluetooth pairing so as connecting to a BLE/MQTT-SN gateway just works out of the box.

MQTT-SN gateway

There are a few MQTT-SN gateways available out there, and you should feel free to use the one that floats your boat. Some (most?) MQTT-SN gateways will also behave as regular MQTT brokers so you won’t necessarily have to bridge the MQTT-SN devices to MQTT strictly speaking, but rather directly use the gateway as your MQTT broker.
For my tests, I’ve been pretty happy with RSMB, an Eclipse Paho component, that you can get from Github.

The README of the project is pretty complete and you should be able to have your RSMB broker compiled in no time. The default configuration file for RSMB should be named broker.cfg (you can specify a different configuration file on the command line, of course).
Below is an example of the configuration file so as RSMB behaves as both a good ol’ MQTT broker, but also an MQTT-SN gateway, bridged to iot.eclipse.org’s MQTT sandbox broker. Note that in my example I only care about publishing messages, so the bridge is configured in out mode, meaning that messages only flow from my MQTT-SN devices to iot.eclipse.org, and not the other way around. Your mileage may vary if you also want your MQTT-SN devices to be able to subscribe to messages, in which case the bridging mode should be set to both

# will show you packets being sent and received
trace_output protocol

# MQTT listener
listener 1883 INADDR_ANY mqtt

# MQTT-S listener
listener 1884 INADDR_ANY mqtts

# QoS 2 MQTT-S bridge
connection mqtts
  protocol mqtt
  address 198.41.30.241:1883
  topic # out

Bridging the BLE device(s) to the MQTT-SN gateway

Now there is still one missing piece, right? We need some piece of software for forwarding the messages coming from the BLE link, to the MQTT-SN gateway.

I’ve adapted an existing Node.js application that does just that. For each BLE device that attaches to it, it creates a UDP socket to the MQTT-SN gateway, and transparently routes packets back and forth. When the micro:bit “publishes” an MQTT-SN packet, it is just as if it were directly talking to the MQTT-SN gateway.

The overall architecture is as follows:

Note that it would be more elegant (and also avoid some nasty bugs, actually[ref]RSMB expects the first packet received on an incoming UDP connection to be a CONNECT packet. If the bridge forwards everything to the gateway transparently, that may not always be the case. If, instead, it takes care of encapsulating all MQTT-SN packets properly, that means you know need only one UDP socket from your BLE/UDP bridge to the gateway)[/ref]) to leverage MQTT-SN’s encapsulation mechanism so as to make the bridge even more straightforward, and not have to maintain one UDP socket per BLE device. To quote the MQTT-SN specification:

The forwarder simply encapsulates the MQTT-SN frames it receives on the wireless side and forwards them unchanged to the GW; in the opposite direction, it decapsulates the frames it receives from the gateway and sends them to the clients, unchanged too.

Unfortunately RSMB does not support encapsulated packets at this point, but you can rely on this fork if you want to use encapsulation: https://github.com/MichalFoksa/rsmb.

Visualizing the data: mqtt-spy to the rescue!

Like in my previous article about Android Things, I used mqtt-spy to visualize the data coming from the sensors.

Note that publishing sensor data in JSON might not be the best idea in production: the MTU of a BLE packet is just 20 bytes. Those extra curly braces, commas, and double quotes are as many bytes you won’t be able to use for your MQTT payload. You may want to look at something like CBOR for creating small, yet typed, binary payloads.
However, JSON is of course pretty convenient since there’s a plethora of libraries out there that will allow you to easily manipulate the data…

Using mqtt-spy, it’s very easy to visualize the values we’re collecting from the accelerometer of the micro:bit, either in “raw” form, or on a chart, using mqtt-spy’s ability to parse JSON payloads.

Video tutorial and wrap-up

I’ve wanted to give MQTT-SN a try for a long time now, and I’m really happy I took the time to do so. All in all, I would summarize my findings as follow:

  • The Eclipse Paho MQTT-SN embedded client just works! Similarly to the MQTT embedded client, it is very easy to take it and port it to your embedded device, and no matter what actual transport layer you are using (Bluetooth, Zigbee, UDP, …), you essentially just have to provide an implementation of “transport_read” and “transport_write”.
  • You may want to be careful when doing things like “UART over BLE”. The main point of BLE is that it’s been designed to be really low-power, so if you tend to overly communicate or to remain paired with the gateway all the time, you will likely kill your battery in no time!
  • The NRF5x series from Nordic is very widely available on the market, so it would be really interesting to run a similar MQTT-SN stack on other devices than the micro:bit, therefore demonstrating how it truly enables interoperability. If you build something like this, I really want to hear from you!
  • Although it’s true that there are not quite as many MQTT-SN libraries and gateways available out there as there are for MQTT, the protocol is pretty straightforward and that shouldn’t be preventing you from giving it a try!
Categories
Eclipse IoT

Eclipse IoT in 2016: A Year in Review

As we are wrapping up the year, it is a good time to reflect on all the great things that have happened to the Eclipse IoT community this year.

IoT logo

[toc no_label heading_levels=”2″]

Eclipse IoT in 4 figures

The 26 different open-source projects that are hosted at Eclipse IoT total 2.3M+ lines of code. More than 250 developers have contributed code to the projects during the past 12 months, and during the same period, our websites have seen 1.3 million of visitors.

Contributions by company

It is always interesting to look at who is contributing to the Eclipse IoT projects. The commitment of companies such as Bosch Software Innovation, Eurotech, Red Hat, IBM, Intel, and many others to open source IoT really shows when you look at how much (working!) code they bring to Eclipse IoT.

Also interesting is the fact that 4 contributors out of 10 are not affiliated with any company – a great example of how pervasive open source is in IoT, with lots of people using the technology and helping improving it by providing patches, bug fixes, …

8 new projects joined the Eclipse IoT family

I am really excited to see how many new projects we onboarded this year, with a particular focus on IoT server technology, an area where very little had been available in open source until recently.

   ⇢ Eclipse Hono

Eclipse Hono provides a uniform API for interacting with devices using arbitrary protocols, as well as an extensible framework to add other protocols.

   ⇢ Eclipse Edje

Eclipse Edje provides an high-level API for accessing hardware features provided by microcontrollers (e.g GPIO, ADC, MEMS, etc.). It can directly connect to native libraries, drivers, and board support packages provided by silicon vendors.

   ⇢ Eclipse Milo

OPC Unified Architecture (UA) is an interoperability standard that enables the secure and reliable exchange of industrial automation data while remaining cross-platform and vendor neutral. Thanks to Eclipse Milo, people have access to all the open source tools necessary to implement OPC UA client and/or server functionality in any Java-based project.

   ⇢ Eclipse Whiskers

SensorThings API is an Open Geospatial Consortium (OGC) standard providing an open and unified framework to interconnect IoT sensing devices, data, and applications over the Web. It is an open standard addressing the syntactic interoperability and semantic interoperability of the Internet of Things. The Eclipse Whiskers project provides a JavaScript client and a light-weight server for IoT gateways.

   ⇢ Eclipse Kapua

Eclipse Kapua is a modular platform providing the services required to manage IoT gateways and smart edge devices. Kapua provides a core integration framework and an initial set of core IoT services including a device registry, device management services, messaging services, data management, and application enablement.

   ⇢ Eclipse Unide

The Eclipse Unide project publishes the current version of PPMP, a format that allows to capture data that is required to do performance analysis of production facilities. It allows monitoring backends to collect and evaluate key metrics of machines in the context of a production process. It is doing that by allowing to relate the machine status with currently produced parts.

   ⇢ Eclipse ioFog

The goal of Eclipse ioFog is to make developing IoT edge software feel like developing for the cloud, but with even more power.

   ⇢ Eclipse Agail

The Eclipse Agail project is a language-agnostic, modular software gateway framework for the Internet of Things with support for protocol interoperability, device and data management, IoT apps execution, and external Cloud communication.

Eclipse Paho & Eclipse Mosquitto are included in many vendors’ SDKs & starter kits

Can you spot a common denominator between these IoT platforms? Not only do they all support MQTT as a protocol to send data from the edge, but they also all provide SDKs that are built on top of Eclipse Paho and Eclipse Mosquitto.

A white-paper on IoT Architectures

This year, the Eclipse IoT Working Group members collaborated on a white paper that has been very well received, with tens of thousands of views and downloads. It is reflecting on the requirements for implementing IoT architectures, and how to implement the key functionality of constrained and smart devices and IoT backends with open-source software.

Ramping up in the Industrial IoT Space

As the different initiatives around “Industry 4.0” are becoming more mature, the ecosystem of open source projects available at Eclipse IoT (Eclipse neoSCADA, Eclipse Milo, Eclipse 4dic, etc…) is getting more and more traction. As an example, the 4diac team has demonstrated how to program a Bosch Rexroth PLC using 100% open source software at the SPS IPC Drives tradeshow this year.

Eclipse 4diac on IndraControl XM22 PLC from Bosch Rexroth and visualized using Eclipse Paho’s mqtt-spy

Virtual IoT now has 1,500+ members

The Virtual IoT meetup group has hosted dozens of webinars this year again. I highly encourage anyone to check out the recordings of our previous sessions – there is a lot of educational material there, delivered by world class IoT experts.

https://www.youtube.com/playlist?list=PLy7t4z5SYNaQS1XZ8uiqqn0nNLi4qU-VW

Trends for 2017

Next year I’m hoping to see a lot more happening in the aforementioned areas. More projects, of course, but also more integration of the current ones towards integrated stacks targeting specific verticals and industries. My colleague Ian also recently blogged on this topic.


One short last word: don’t forget to follow us on Twitter and Facebook to learn more about what is happening within our community.

Happy holiday season everyone!

Categories
Eclipse IoT

Using MQTT and Eclipse Paho in Android Things

A couple of days ago, Google announced that they were essentially rebranding Brillo to Android Things (I do love that name, by the way!), and finally opening it for a Developer Preview.

There are a few things I already like very much in Android Things:

  • It is already supported on Intel EdisonNXP Pico and Raspberry Pi 3, and there are ready to use filesystem images that you can just flash to get going with Android Things in just minutes.
  • The Rainbow HAT sensor kit that’s available for Raspberry Pi is very cool, and includes a 4-digit LED display, 7 RGB LEDs, a temperature and barometric sensor, a piezzo buzzer for basic PWM-based audio, and three capacitive touch buttons. Sparkfun has a kit that’s targeting the Edison, while Adafruit’s kit is general purpose and meant for breadboard enthusiasts.

Rainbow HAT for Raspberry Pi (Photo credit: Pimoroni)

  • Anyone who’s tried to manipulate low-level peripherals using Java will be pretty happy to see that Android Things’ Peripheral I/O APIs provide nice wrappers for GPIOsPWMI2CSPI and UART.
  • Implementing IoT sensor drivers taps into the existing sensor framework you may already be familiar with if you’ve already tried to access the gyroscope or light sensor of an Android device in your app, and the same SensorManager API you’re already used to can be used with your new devices (for which a driver may already exist, and if not adding a new one does not seem overly complex)
  • Finding good development tools for building IoT solutions is always a challenge. It’s great to be able to leverage the Android SDK tools and Android Studio for things like device emulation, debugging, etc.

I just received my Rainbow HAT today and thought I would use the opportunity to do a quick tutorial on how to use MQTT with Android Things, using Eclipse Paho. What’s more, I’ll also show you a cool feature in mqtt-spy that will allow us to easily display the live temperature on a chart.

I used the Weather Station example from Android Things as a starting point, as it is already including code to publish data to the cloud using Google Pub/Sub. My fork is available on Github, and as you can see the changes to the original example are very limited!

Check out the video, and let me know if you have any questions!